Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This paper presents the line-edge-roughness (LER) characterization of the photomask patterns and the lithography-printed patterns by enhanced knife edge interferometry (EKEI) that measures the interferometric fringe patterns occurring when the light is incident on the patterned edge. The LER is defined as a geometric deviation of a feature edge from an ideal sharp edge. The Fresnel number-based computational model was developed to simulate the fringe patterns according to the LER conditions. Based on the computational model, the photomask patterns containing LER features were designed and fabricated. Also, the patterns were printed on the glass wafer by photolithography. The interferometric fringe patterns of those two groups of patterns were measured and compared with the simulation results. By using the cross-correlation method, the LER effects on the fringe patterns were characterized. The simulation and experimental results showed good agreement. It showed that the amplitude of the fringe pattern decreases as the LER increases in both cases: photomask patterns and printed wafer patterns. As a result, the EKEI and its analysis methods showed the potential to be used in photomask design and pattern metrology, and inspection for advancing semiconductor manufacturing processes.more » « less
- 
            It is common to evaluate a set of items by soliciting people to rate them. For example, universities ask students to rate the teaching quality of their instructors, and conference organizers ask authors of submissions to evaluate the quality of the reviews. However, in these applications, students often give a higher rating to a course if they receive higher grades in a course, and authors often give a higher rating to the reviews if their papers are accepted to the conference. In this work, we call these external factors the" outcome" experienced by people, and consider the problem of mitigating these outcome-induced biases in the given ratings when some information about the outcome is available. We formulate the information about the outcome as a known partial ordering on the bias. We propose a debiasing method by solving a regularized optimization problem under this ordering constraint, and also provide a carefully designed cross-validation method that adaptively chooses the appropriate amount of regularization. We provide theoretical guarantees on the performance of our algorithm, as well as experimental evaluations.more » « less
- 
            The preparation of defect-free wafers serves as a critical stage prior to fabrication of devices or chips as it is not possible to pattern any devices or chips on a defected wafer. Throughout the semiconductor process, various defects are introduced, including random particles that necessitate accurate identification and control. In order to effectively inspect particles on wafers, this study introduces a wafer particle inspection technique that utilizes computer vision based on HSV (hue-saturation-value) color space transformation models to detect and to classify different particles by types. Artificially generated particle images based on their color properties were used to verify HSV color space models of each particle and to demonstrate how the proposed method efficiently classifies particles by their types with minimum crosstalk. A high-resolution microscope consisting of an imaging system, illumination system, and spectrometer was developed for the experimental validation. Micrometer-scale particles of three different types were randomly placed on the wafers, and the images were collected under the exposed white light illumination. The obtained images were analyzed and segmented by particle types based on pre-developed HSV color space models specified for each particle type. By employing the proposed method, the presence of particles on wafers can be accurately detected and classified. It is expected to inspect and classify various wafer particles in the defect binning process.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available